0=t^2-8t-16

Simple and best practice solution for 0=t^2-8t-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=t^2-8t-16 equation:



0=t^2-8t-16
We move all terms to the left:
0-(t^2-8t-16)=0
We add all the numbers together, and all the variables
-(t^2-8t-16)=0
We get rid of parentheses
-t^2+8t+16=0
We add all the numbers together, and all the variables
-1t^2+8t+16=0
a = -1; b = 8; c = +16;
Δ = b2-4ac
Δ = 82-4·(-1)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*-1}=\frac{-8-8\sqrt{2}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*-1}=\frac{-8+8\sqrt{2}}{-2} $

See similar equations:

| 3+2x=x+15 | | 65=10x+10 | | X^3-6x^2+5x-240=0 | | 65+10x+10=180 | | 4s-2=s+7= | | 65+2=10x+10 | | 7x+4(x-2)=155-2(2x+5) | | x-6=-2x=4 | | 9/6*x=51 | | 57x=513 | | -6g+9=51 | | 65+2+10x+10=180 | | x/5/6=4/15 | | 62+7x-8=12x+9 | | 986+y=4133 | | 1)7.6=2(n+5.7)* | | 40x+55(6-x)=285 | | 15+2x=9x-13 | | 1(4x+18)=3(3x) | | 7+12=1/2(14n+24) | | 8=z−8 | | 7+12=12(14n+24) | | 99-2(3x-8)=3x+10 | | 62+7x-8+12x+9=180 | | 9x+14=10x-5 | | 67-56=f | | 12(x+12)=-4(x+12) | | 12(x+12)=-4(x=12) | | 285=40x+55(6-x) | | 9x+14+10x-5=180 | | 2q+6=q^2 | | 24-3(1-2x)=8+3(1-2x) |

Equations solver categories